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Abstract

This report documents the development, validation, and applica-

tion of a spectrally accurate boundary-layer code, WINGBL2, which

has been designed specifically for use in stability analyses of swept-

wing configurations. Currently, we consider only the quasi-three-

dimensional case of an infinitely long wing of constant cross section.

The effects of streamwise curvature, streamwise pressure gradient, and

wall suction and/or blowing are taken into account in the governing

equations and boundary conditions. The boundary-layer equations

are formulated both for the attachment-line flow and for the evolving

boundary layer. The boundary-layer equations are solved by marching

in the direction perpendicular to the leading edge, for which high-order

(up to fifth) backward differencing techniques are used. In the wall-

normal direction, a spectral collocation method, based on Chebyshev

polynomial approximations, is exploited. Spectral accuracy is advan-

tageous in that 1) the solution is highly accurate even for relatively

coarse grids, 2) the boundary-layer profiles and their derivatives are

extremely smooth, and 3) interpolation to other grids can be accom-

plished with virtually no loss of accuracy. The accuracy, efficiency, and

user-friendliness of WINGBL2 make it well suited for applications to

linear stability theory, parabolized stability equation methodology, di-

rect numerical simulation, and large-eddy simulation. The method is

validated against existing schemes for three tests cases, including in-

compressible swept Hiemenz flow and Mach 2.4 flow over an airfoil

swept at 70° to the free stream.



1 Introduction

In the current global economy, the economic pressures on aircraft manufac-

turers are such that a single major design error could precipitate the financial

collapse of an entire company. In such a competitive environment, the need

for accurate, dependable, user-friendly, and robust numerical tools for anal-

ysis and design cannot be overemphasized.

In particular, the greater emphasis on drag reduction, transition predic-

tion, and laminar-flow control technology highlights a current need for highly

accurate boundary-layer codes. Although it is possible and might seem de-

sirable to solve the full Navier-Stokes (NS) equations to obtain boundary-

layer profiles for stability analyses, in practic% NS computations become

prohibitively expensive whenever the boundary layer is highly resolved. (The

reader should be aware that stability analyses require not only accurate de-
termination of the mean flow but also of the first and second derivatives of

mean-flow quantities; hence, accuracy requirements are stringent.) Conse-

quently, current state-of-the-art techniques rely on boundary-layer calcula-

tions that are coupled to outer (inviscid) solutions obtained from the Euler

equations. For the inner (boundary-layer) solution, spectral methods are

particularly well suited. In practice, spectral accuracy guarantees extremely

smooth boundary-layer profiles and ensures thai derivatives and interpolants

can be computed with no significant loss of accuracy.

This report documents a spectrally accurate boundary-layer code called

WINGBL2, which was developed especially for application to analyses of

crossflow instability and transition on highly swept wings (the dominant

instability modes if the sweep angle is sufficiently large). In particular,

WINGBL2 provides the boundary-layer profile., (and their derivatives) that

are needed for linear stability analyses, for analyses based on parabolized

stability equation (PSE) methodology, and for the base flow for direct nu-

merical simulations (DNS) or large-eddy simu:ations (LES). Currently, we

consider a quasi-three-dimensional geometry ix which the wing is assumed

to be infinitely long in span. The effects of surface curvature, streamwise

pressure gradient, and wall suction and/or blowing are incorporated into the

governing equations and boundary conditions. Because the code is intended

for use by PSE, DNS, and LES, which consid,,'r mean-flow nonparallelism,

particular attention is paid to the accurate dete:mination of the wall-normal



velocity. Proceduresfor interpolation and extrapolation to other grids are
also carefully addressed.The code is equally applicable to incompressible
or compressibleflows; however,becauseof the unnecessaryparticipation of
the energyequation in the incompressiblelimit, someperformancepenalty
is incurred.

In the next section,wepresentthe coordinate systemand the governing
equationsfor the infinite swept-winggeometry.In section3, we introduce the
boundary-layertransformationsthat leadto the transformedgoverningequa-
tions. The attachment-line boundary layer is consideredas a special case.
The numerical method is discussedin section4. Section5 treats evaluation
of the wall-normal velocity. Data input and output arediscussedin section
6, as are data interpolation and extrapolation to other grids. In section 7,
weclosewith severalvalidation test cases,amongthem incompressibleswept
Hiemenzflow and compressibleflow overa highly sweptwing.

2 Coordinate System and Boundary-Layer

Equations

Let (x', y*, z*) be a body-oriented orthogonal coordinate system on a swept

wing, where x* is the arc length from the attachment line in the direction

perpendicular to the leading edge, y* is the wall-normal coordinate, and z*

is the spanwise coordinate parallel to the leading edge, as shown in Figure 1.

(Throughout this report, dimensional quantities are denoted by an asterisk.)

The body-fitted system is imbedded in a rectangular Cartesian coordinate

system, which we denote by (l', r*, z*) and which will later be used to define

the wing geometry. Consider the flow of air over the surface of the wing,

where p*, p*, T', #*, and _;* denote the pressure, density, temperature, vis-

cosity, and thermal conductivity of the air, respectively. Furthermore, let

[u*, v*, w*] T denote the velocity vector in the (x*, y*, z*) system.

The three-dimensional compressible boundary-layer equations are given

in dimensional units for body-fitted coordinates on page 220 of reference [1].

Here, we impose two additional assumptions: the flow is laminar, and the

span is infinite. The latter assumption implies that all terms that contain

spanwise derivatives 0(_) vanish. The following governing equations result:



Continuity:

x-momentum:

0 0 .
Ox. (P* U*) + _y. (qp v')- 0 (1)

p.u*o_" p,_.ou"_ 1op" o [ . o_* (2)

z-momentum:
F u* Ow* . . Ow* 0 { , Ow*_

q Ox* + p v _ - Oy* _# -_-:y*) (3)

Energy:

,,*_*oT. .v.Or* o (," or*_ ,,.(o_.__ ,. (o_'__q Ox* ÷ Oy* - Oy* P-rOy*] + \Oy*] + \Oy*]
(4)

State:

p* = p*n*gT* (5)

m

where Pr = _ is the Prandtl number, and Rg s the (ideal) gas constant.

. d_.__ arises fromIn the equations above, one metric quantity, q = 1 - y dx*,
dr*

streamwise curvature, where ¢ = tan -1 _ is tile angle in the (x*, z*) plane

of the surface tangent to the body. In boundary-layer theory,

°P--2= 0 (6)
Oy*

in which case we obtain

Op* @* du;
0x* - dx* - P;_;_: (7)

for the inviscid flow. Throughout this paper, the :mbscript e denotes boundary-

layer edge values.



3 Transformed Boundary-Layer Equations

Transformation of the boundary-layer equations is desirable for two reasons.

First, Eqs. (1)-(4) are singular at x* = 0. Second, a clever transformation
will remove most of the timelike evolution in the x* direction, which facil-

itates marching solutions. In accordance with reference [1], we adopt the

transformation

_'=x" (8)

71= Vx.p;tt. p*dy*= L---: dy* (9)

where L* is the boundary-layer length scaledefined as

L*= /-_x* (10)
Vp;u:

and

0- p_* - T* (11)
p* T:

is the equation of state under the boundary-layer approximation (Eq. (6)).

Three elements of the Jacobian of the transformation are readily accessi-

ble from Eqs. (8)-(9); these are

0_* _ 1 (12)
Ox*

and

-0 (13)
Oy*

or I 1

Oy* L*O
(14)

Because the product of the Jabobian matrices of the forward and inverse

transformations must be the identity matrix, we also ascertain

GQX*
- 1 (15)

OC



and

From Eq. (16), we obtain

and

07 07 Oy"

Ox* Oy* 0_"

v*ff*,,) = L'(_') O(_",_)d,

]0"q(¢*,r_) = 1- L*(¢*)_ 7 O((*,_?)d,

(16)

(17)

(18)

(19)

3.1 Transformed Equations for u* > 0

Provided that neither u_ nor we* vanish, we
as follows:

U*
F----

'u, e

w*
G =-

w e

v*

V _-_ --

i

U e

and

can define dimensionless velocities

07?3

V = ReL- +
0 q Ox*

where ReL is the Reynolds number based on L*; that is,

(20)

(21)

(22)

(23)

ReL- p*u;L* (24)

Note that ReL = Rv/-R_. The following transh,rmed governing equations

result from Eqs. (1)-(4), transformation (8)-(9), and definitions (20)-(23):

Continuity:
_* OF

q 0_*
ov F (1 + _o) - '_'_-VO= o (25)



x-momentum:

+vOF 31(0_F2)_0 [_OF]Or/ q _ #_-_- = 0 (26)

z-momentum:

Energy:

q 0_* + V Or/ Or/ # = 0 (27)

_*F 00

q 0(*

where

and

001 -(-_-I)M_,_ OG 2 = 0

(2s)

ao = L* de
d_* (29)

_* d#; _* d(p*_u*)
3o- + (30)

_*du:
/_1 - (31)

u_ d_*

M=,_-- _u;., M_,_ = __w_ (32)
a; a;

a: = _/TRg*T: (331

#

_5= O; #= -7; #_ = #*(T_*) (34)

and where ? is the ratio of specific heats. For this work, we model viscosity

(and thermal conductivity) by Sutherland's law, namely,

#(0) = 03/2(1+ C). 198.6R (35)
O+C ' C- T:

Other viscosity laws are readily implemented.

Although all three velocity components appear above, the governing equa-
tions remain two dimensional in the sense that the flow variables are functions



of (_*, r/) only. The reader should be aware that the transformed continuity

equation presented on page 397 of reference [1] is in error.

If the sweep angle _b = 0, then w* vanishes; however, Eqs. (25)-(28)
remain valid if G = 0.

3.2 Attachment-Line Equations

When the body is blunt, the flow stagnates along the attachment line _" = 0.

* u* 0 for _* 0, in which case the x-momentum equa-By definition, u_ = = =

tion vanishes. To borrow from the Frobenius method for singular differential

equations, we differentiate Eq. (2) with respect to x*; by then redefining F,

V, and L* as

and

f__._*, f. Ou_____*. du_ (36)
F= f;, = Ox*' f2 - dx*

V- w;v (37)
.f2L'O

L* = / _ (38)
Vp;I:

(25)-(28),we obtain an equation system formally identic_d to that of Eqs.

with the exception that the timelike derivati,_e terms vanish and certain

coefficients differ. Thus, the governing equaticns for _* = 0 and for _* >

0 can be put in the following universal form, valid for all _* with proper

interpretation of F, V, and L*:

Continuity:

x-momentum:

_* OF OV C_IF
q o_-:+ N + q c_qvo = 0 (39)

_'F OF

q 0_*
vOr cxl(o- F_)- o [zor]

+ 0. q N [ NJ = 0 (40)
z-momentum:

CF OG vOa 0 [. 0,_1
q 0_ ° + Or/ Or/ ["-0,/] = 0 (41)

8



Energy:

_*F O0 VO0
q OC +

, (0c) 

If the body has a sharp leading edge or if _* > 0, then

1

C_, = 2(1 +/30)

Cc2 _ O_o

Cxl =/31

Gel = (3` -- 1)M:,_

and

vo_= (3 -̀ 1)ML

Otherwise (if the body is blunt and _* = 0), then

Ccl=I

6c2 -_- Clo

Cxx = 1

Ce, = 0

C_2 = (3' - 1)M_,_

and

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

3.3 Boundary Conditions

The appropriate wall boundary conditions for velocities are

F(0)=G(0)=0; V(0)=Vw_

where Vwall is negative for wall suction or positive for blowing.

temperature at the wall, we consider either the isothermal condition

0(0)=
T:

(53)

For the

(54)

9



or the adiabatic-wall condition

00
------0

0r/
(55)

At the far-field boundary r/= r/max

F -- G = 0 = 1 (56)

In the next section, a transformation will be introduced to eliminate the

necessity of a far-field condition for V.

4 Numerical Methodology

Details of the spectral collocation method can be found in Pruett and Streett

[2] and Pruett [3]. Here, we provide only a sketch of the method.

The governing equations (39)-(42) are solved by marching downstream

in the timelike variable _*. Timelike derivatives of the form of0--U' for example,
are approximated by high-order backward finite,iifferences. The present code

allows for ruth-order differencing, where 1 _< m < 5. In practice, boundary-

layer solutions are relatively insensitive to the order of the marching scheme;

we recommend m = 2 or m = 3. The presenl scheme also permits equal

or unequal steps in _*. For the "initial condition" ((* = 0), the timelike

derivative terms vanish. For subsequent steps, the order of the scheme is

limited initially by the number of previous stalions available. That is, for

step 1, m = 1; for step 2, m = 2, and so on, tmtil the full order m of the
scheme is established.

At each marching station _* (i = 0, 1,...,M}, the solution procedure is

equivalent to solving a system of four coupled nonlinear ordinary boundary-

value problems in the variable y. As for finite-difference methods, we parti-

tion the domain such that 0 = r/0 < r/1 < ... < r/N = r/max, and we define

the vectors 0",/_, G, and V, whose elements are the discrete approximations

to their continuous counterparts at the (N + 11 grid points. Moreover, we

define the discrete differentiation operator [D], whereby, for example, [D]0"

approximates the continuous derivative _.°° Spectral accuracy is achieved by

10



approximating the continuous variables with finite expansions in the Cheby-

shev polynomials

T/(_) = cos [j COS -1 5] (57)

which are orthogonal on [-1,+1]. The natural (Gauss-Lobatto) set of collo-

cation points associated with Eq. (57) is

jTr

5j = cos-_- (j = 0,1, 2, ..., N)
(58)

for which the interpolating polynomial is uniformly bounded as N _ oo.

The differentiation operator [D] is obtained by explicitly differentiating the

Chebyshev polynomials at the collocation points. Unlike in standard finite-

difference techniques, [D] is a dense, rather than banded, (g + 1) x (g + 1)

matrix. The advantage of spectral methods is that as N _ c_ the truncation

error diminishes faster than N -P for any finite power P, a property known as

spectral convergence. An additional advantage of spectral methods is that,

unlike finite-difference methods, boundary points require no special treat-

ment. Currently, we compute discrete derivatives by matrix multiplication,

although a considerable performance gain can be realized for large values of

N by fast Fourier transform methods.

For collocation methods, the discrete governing equations are required to

be exactly satisfied at the collocation points. The discrete governing equa-

tions are analogous to their continuous counterparts (Eqs. (39)-(42)); for

oy become [D]t p. For initial guesses go, fro, and so on,example, terms like

the four discrete governing equations define a residual vector r-° of length

4(N + 1). The residual iterates _, where k denotes the iteration index, are

driven toward zero by Newton's method. The Jacobian for Newton's method

is a nearly dense [4(g + 1)] × [4(g + 1)] matrix. For i > 0, the starting val-

ues for the iteration are obtained from the converged solution of the previous

marching step. For spectral methods based on Chebyshev polynomials, Jaco-

bians are typically quite ill-conditioned. Typically six to seven iterations are

required to drive the norm of the residual vector to 10 -7, a level at which the

solution is smooth to nearly machine precision. To obtain convergence of the

iteration, all dependencies must be represented by the Jacobian, including,

for example, the variation of q with 0 implicit in Eq. (19).

In practice, before the discrete equations are solved, we make one further

transformation to Eq. (39). By multiplying the continuity equation by q and

11



integrating both sidesfrom r/j-1 to r/j, weobtain

qVl,7, - qVl,7,_, + CclF + dr� = 0 (j = 1,. N) (59)
,_, O['J ""

Integration of Eq. (39) has two advantages. First, after integration, no

boundary condition is needed for VN (which is now part of the solution).

Second, a term produced in the integration by parts of q__y exactly cancels the

term that contains Cc2 in Eq. (39). The discrete integration that corresponds

to the integral in Eq. (59) is also performed by the method described in [3],

which makes use of a spectrally accurate quadrature operator [Q] in the form

of an N x (N + 1) matrix.

One final practical consideration requires the use of a continuous transfor-

mation r/(O) from the computational domain [-1,+1] to the physical domain

[0, r/max]. A well-designed transformation also serves to concentrate points

near the wall, as is desirable for boundary-layer calculations. The reader is

referred to reference [3] for details of the specific transformation. In practice,

the metric Of//0r/, computed either analytically c r numerically to spectral ac-

curacy, is imbedded directly into the differentiati.m and quadrature operators

[D] and [Q], respectively.

5 Spectrally Accurate Extraction of Wall-

Normal Velocity

Historically, the wall-normal v velocity has been the stepchild of boundary-

layer approximations. Until recently, most stability analyses for boundary-

layer flows assumed the mean flow to be locally parallel, in which case

the wall-normal velocity was disregarded altog¢.ther. With the advent of

multiple-scales analyses, PSE methodology, and spatial DNS, each of which

considers mean-flow nonparallelism, the wall-normal velocity has assumed

greater importance. This is particularly true for high-speed flows, in which

nonparallel effects can be quite important. When desired, the wall-normal

velocity is usually extracted from the continuity equation in physical space;

this process requires interpolation, which can reslllt in poor accuracy. In ac-

cordance with Pruett [3], a better approach is to extract v directly from the

12



transformations(23) and (37), in which casethe continuity equationremains
asa check.

From Eqs. (23) and (37), respectively,weobtain

O [v _'Fart]v- ReL q 0-_-x* (_* ¢ 0) (60)

f_L"
v - VO (_" = 0, blunt body) (61)

W e

The extraction of v is straightforward for the attachment-line problem

_* = 0. However, for _* :/: 0, Eq. (60) requires an expression for 0__n_0z.• By

explicitly differentiating transformation (9) with respect to x*, we obtain

(62)

where Re1 = p_u*_/#_ is the edge unit Reynolds number. To obtain Eq. (62),

we have used Leibniz' Rule to differentiate Eq. (9) beneath the integral sign.

The integrations necessitated by the first term in Eq. (62) and y* (see Eq.

(18)) in the second term of Eq. (62) are computed to spectral accuracy by

the integration procedure described in detail in reference [3].

6 Code Input and Output

6.1 Input

Four input files are required to define the physical parameter values, the pa-

rameters of the method, the geometry, and the boundary-layer edge data.

Physical constants are set in a file "constants.h," which is incorporated into

subroutine "econl.f" by a FORTRAN include statement. This file normally

resides with the source code. Default values are supplied for any physical con-

stants not specified. Parameters of the method are read from standard input

(FORTRAN unit 5) in the initialization subroutine "init.f." We have named

the standard input file "wingbl2.d." The wing geometry is specified in file

13



"geom.dat" and read by subroutine "sgeoml.f," which uses cubic splines to

obtain accurate interpolated values for _*, ¢, and so on. The boundary-layer

edge data are specified in file "edge.dat" and read by subroutine "econl.f," in

which splines are also exploited for accurate interpolation of the edge data.

Sample listings of the input data files are provided in appendix A. These

files and the source code are documented such that the role of most param-

eters is self-explanatory. In the following subsections, we provide additional

documentation for those parameters whose usage is not self-evident.

6.2 Determination of Arc Length

File "geom.dat" contains the chord length c* (CltORD), the sweep angle ¢ in

degrees (SWEEPD), a parameter KSPLIT, whose function will soon become

evident, and tabulated values of l*/c* and r*/c', which define the wing ge-

ometry relative to some origin whose precise coordinates are unimportant. If

the parameter CHORD is negative, the negative sign is interpreted to mean

that the chord length c_ (normal to the leading edge) has been specified in

lieu of c* (chord length parallel to the free-stream velocity vector). On the

* _2" COS ¢.basis of Figure 1, the relationship between these two values is cn =

For the case (CHORD < 0), the tabulated valu,_s l* and r* are assumed to

be normalized by c_.

Considerable care was devoted to ensure that geometric and edge data

are evaluated accurately. Specifically, to avoid singularities in the calculation

of arc length, we employ the two equivalent expressions

= 1+ \ dl")

and

_*(r*) = fJ0 1 + dr" (64)

where Eq. (59) is used in the attachment-line r,_gion and Eq. (60) is used

elsewhere. The switch from Eq. (59) to (60) is made at grid point KSPLIT

(an input parameter referred to above), typically near the point at which

dr*/dl* --" 1. The integrands on the different re,_ions are independently fit

14



with splines, and the resulting spline functions are integrated analytically.

To ensure continuity of first and second derivatives at the interface, the

end conditions on the matching splines are adjusted as follows. It can be

determined from elementary calculus that

dr* 1
- (65)

dl* dl*/dr*

and

d1.2 - \ dl" ] dr .2 (66)

d2r *

An initial guess is made for _ as an end condition for one spline; the

other end condition is determined from Eq. (66). The assumed value is

subsequently adjusted with the secant method until Eq. (65) is satisfied. At

convergence, functional values and first and second derivatives are consistent
at the interface.

Similarly, ¢ and _ are obtained from two different sets of expressions:

dr* de d2r"

¢ = ATAN2(_-,1.); _ - c°s3 Cd-_ (67)

¢ = ATAN2(1 dl*. de d21 *
"' d_-:r*); dC - sin3 Cd_ (68)

where ATAN2 is a particular two-argument FORTRAN arctan function.

6.3 Gas Relations for Edge Conditions

Our interest is in high-efficiency wings without shocks. Consequently, we

assume that the flow is isentropic and that the fluid is a perfect gas. (It

is straightforward, however, to modify the gas relations to consider non-

isentropic flow.) From file "edge.dat," we obtain the free-stream Mach num-

ber Moo (MINE), the pressure P_o (PINF), and the temperature T:o (TINF),

as well as tabulated values of the chordwise coordinate l*/c* (XC) (scaled

either by c* or c_), the pressure coefficient Cpe (PC), and the suction coeffi-

cient Cq, (QC). From this data, the total free-stream velocity U_o (UTINF)
is computed as

U_ = Moox/'yRg*Tg o (69)

15



Edge pressuredata areextracted from the pressurecoefficients(PC) as

Cp, - p; -
2_* /1A[2
9./.,-_ a r_. O0

(70)

From Eq. (70), we obtain

* 7 2
P----_= 1 + -_Cp_M,_p;

(71)

From the isentropic perfect gas relations given in reference [4], we obtain

2.=!
T: p;

- (72)
T* p_

and

(U*/2 2 [ T*] (73)U_" =1+ (3'-I)ML 1-T£]

For the infinite swept wing, the spanwise edge velocity is constant, namely,

w: = US sine (74)

From Eqs. (73)-(74) and the expression

U_ = _/u; 2 + w: 2 (75)

we obtain u_. The contribution of the wall-normal velocity to the total

velocity is assumed to be inconsequential. Given these quantities, the vari-

ations along the boundary-layer edge of all other: quantities of interest (e.g.,

Reynolds number) readily follow. Two additional parameters head file "edge.dat."

These are IFIRST, which relates the first indices of the tabulated values of

files "geom.dat" and "edge.dat," and ISTAG, which identifies the index of

the stagnation point (attachment line). At present, the tabulated locations

l*/c* of "edge.dat" are assumed to be a contiguols subset of the values listed

in "geom.dat." Furthermore, the stagnation point is assumed to be known.

However, the spline interpolation algorithms are quite general, and these

restrictions are easily relaxed.

16



6.4 Wall Suction

From the tabulated suction coefficients Cq, (QC), we derive values for Vwall
as follows. From the definition

[*P Vwall ]Cq_ = (76)
[p* U*J

we obtain either
v p UL
_[wall- . . Cq_ (77)

peUe

for u* _ 0 or
V * *

_lwall- P°°UL'"-'p:w:oq_ (78)

for attachment-line flow. From Eqs. (77) and (78) above and Eqs. (23) and

(37), appropriate expressions for Vwall are readily obtained. (Note that Eq.

(23) simplifies considerably at the wall because _ vanishes there.)Ox*

6.5 Output

The output consists of a file "legend" and a collection of numbered files begin-

ning with "sta_0000" and numbered with increments of IOUT (an output pa-

rameter), all placed in subdirectory "sta" (for "stations"). Each "sta_xxxx"

file corresponds to a particular value of x* and contains the dimensionless

quantities 0, F, G, and v and their first and second derivatives with respect

to y. Appended at the end of each "sta_xxxx" file is a list of approximately

30 relevant dimensional and dimensionless values that apply at the given

station, among them x*, local Mach number, Reynolds number, displace-

ment thickness, and boundary-layer edge conditions. The file "legend" tab-

ulates summary information from the "sta_xxxx" files. Sample "legend" and

"sta_xxxx" files are given in appendix B. Lengths in the output files are non-

dimensionalized at the user's option (ISCALE) either by the boundary-layer

length scale L* (Eq. (10)) or by the boundary-layer displacement thickness

5*, which is defined as

_0°° [ p'u*"
5*= 1

p;u;
dy" = L" [nmax [0 - FI dv

JO

(79)

17



Among the quantities tabulated in the "legend" file are_*andthe ratio 6*/L*

as functions of x*. As the Mach number increases, the ratio _*/L* increases

dramatically from its value of about 1.7 at M_ = 0. Consequently, $* is the

more practical length scale, although L* is the conventional scale in stability

theory. A recommended rule of thumb is to adjust r/max (ETA_MAX, an

input parameter) to ensure that the computational domain is at least 3(_* in

thickness. Otherwise, the outer boundary condition will "pinch" the solution.

In addition to the output described above, several diagnostic files are

produced; among these is the standard output file to FORTRAN unit 6.

6.6 Interpolation and Extrapolation

Because the present code is designed specifically for applications to stability

analyses, DNS, and LES, we have paid special attention to the process of

interpolating and extrapolating data to other grids. For this purpose, a

companion code INTBL has been written. In brief, the procedure is as

follows. In the output from WINGBL2, lengths are scaled either by L* or

(_*, each of which grows with x*. The outer edge of the boundary layer

typically lies between 2 and 4 displacement thb:knesses from the wall. Let

y_(x*) denote the location of the boundary-layer edge, where y = y*/L*.

To interpolate to a grid that is uniform in y, for example, we first perform

spectrally accurate interpolation in the interior ::'egion (0 _< y _< y_) coupled

with analytic extrapolation outside the boundary layer (y > y,). This step

is followed by high-order (typically fifth) polynomial interpolation in x*.

Analytical extrapolation of u*, T*, and w* is lrivial because, for example,

u* = u,* in the outer flow. Extrapolation of v*, however, requires some care.

From the continuity equation (Eq. (1)), we derive the following ordinary

differential equation for the far-field behavior of _v:

dv

( 1 - o_oy) -7- - O_oV - - _3
ay

(80)

where a0 and v are defined in Eqs. (29) and (221, respectively, and

L" d(p*u*)
-- (81)

p;u* dx*
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Equation (80) has the exact solution

v(y)=ve[1-1 --_°y_]-/3['y'-y_-o_oyJ ll ---_oy]

where ve = v(y_). From Eq. (82), we also obtain v'(y) and v"(y).

(82)

7 Code Validation

We present three test cases that collectively validate WINGBL2 for compress-

ible and incompressible flows, for two-dimensional and quasi-three-dimensional

flows, and for flows over bodies with and without streamwise curvature and

with and without streamwise pressure gradients.

7.1 Two-Dimensional Compressible Flow Along a Flat
Plate

Here, we consider a two-dimensional Mach 4.5 flow of air along a flat plate

with a sharp leading edge. For a thin plate and a thin boundary layer, the

shock is oblique and weak and the flow can be considered to be approximately

isentropic. The parameters of the flow are Moo = 4.5, Too = ll0°R, Re1 =

2.888 × 106, 7 = 1.4, and Pr = 0.7. The pressure and the suction coefficients

are zero. The geometric parameters are _b = 0, with a sharp leading edge

(IBLUNT=0) and no streamwise curvature (r*(l*) = 0). In the absence of a

streamwise pressure gradient, a similarity solution exists. Figure 2 compares

results from the present code with those obtained from the spectrally accurate

boundary-layer code of Pruett and Streett [2]. Results from the two methods

are indistinguishable.

7.2 Incompressible Swept Hiemenz Flow

The incompressible swept Hiemenz problem, which was studied thoroughly

in Malik et al. [5], represents an idealized stagnation-region flow on a swept
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flat plate. In the absenceof body curvature, u_ varies linearly with x* (i.e.,

du*/dx* is constant), and a similarity solution exists for which the boundary-

layer thickness remains fixed with x*. The reader is referred to reference [5]

for details of the problem and the geometry. Figure 3 presents the results

obtained by the present method with those of reference [5] at a station x*

for which ReL = 500 and u_ = w_. The results of the two methods are

indistinguishable. Results for incompressible flow were obtained from the

present code by setting M_ = 0.01, p* = 2000 psf, and T_ = 520°R, and

by adjusting the velocity gradient du*/dx* and the sweep angle ¢ to obtain

ReL = 500 and u_ = w* at some arbitrary value of x*. The parameters

selected were ¢ = 50.7 ° and du*/dx* = 0.096t sec -1, which gave x* = 90

ff as the station of interest. We point out tilat for the present method

the algorithm actually switches from the attachment-line equations to the

equations of the evolving boundary-layer flow; however, the solutions are

virtually identical, as they should be for this unique problem.

7.3 Flow on a Supersonic, Highly Swept Wing

Here, we compute the boundary layer on the u_)per surface of an infinitely

long shockless wing with a chord length 20 ft; the wing is swept 70.22 ° to

a free-stream velocity of Mach 2.4. The input files presented in appendix

A contain the data for this test case (conden:_ed for brevity). This case

represents a stringent test for boundary-layer codes. Streamwise curvature

in the attachment-line region isquite strong, and regions of both favorable

and adverse pressure gradients exist. The maximum Mach number attained

in the direction perpendicular to the wing is _bout 0.95, in which case a

shock is avoided and isentropic gas relations apply. Figures 4 (a,b,c) compare

the present results with those obtained from the code of Wie [6] at stations

x* = 6.9x 10 -3, 0.851, and 4.027 ft, respectively. For both the finite-difference

and spectral methods, approximately 40 grid l,oints were used across the

boundary layer. The agreement is good at all th:'ee stations, except for some

disagreement in the wall-normal velocity. Both :.olutions fail to converge for

l*/c* > 0.6, where there is a strong adverse pressure gradient. With strong

suction in the trailing-edge region, the present code predicts that attached

flow can be maintained. To obtain a solution for l*/c* > 0.6 without suction,

interaction must be allowed between the invisc d region and the boundary

layer. In Figure 5, we compare second derivatives of the u-velocity component
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at station x* = 4.027 ft. The agreement is quite good.

For applications to stability analyses, we prefer to use approximately 100

points across the boundary layer, even for the spectral method. Such fine

resolution is unnecessary but desirable for two reasons. First, for the present

spectral method with N = 100, the velocity and temperature profiles and

their first and second derivatives are smooth to 13, 10, and 7 significant digits,

respectively. For stability analyses, the smoothness of the profiles and their

derivatives, in addition to accuracy, is important. Second, a high-density

grid ensures virtually no loss of accuracy in interpolation to other grids.

In summary, the present method is well suited for stability analyses that

use any of the following numerical tools: LST, PSE, DNS, or LES. The spec-
tral accuracy of the present scheme and its accurate determination of the

wall-normal velocity render WINGBL2 particularly attractive for applica-

tion to high-speed boundary-layer flows, which are quite sensitive to subtle

changes in the mean state.
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Appendix A: Input Files

Input file "constants.h"

rgas = 1716.
col = 2.27e-8

co2 = 198.6

pr = 0.72

gamma = 1.4

Input file "wingbl2.d"

1

0

60

-0.05

42

0

3

1

/IBLUNT = 0 (sharp leading edge); 1 (blunt body)

/ISCALE = 0 (scale lengths by L*); 1 (scale by delta*)

/NSTEPS = number of steps in marching (xi) direction

/DX = dimensional increment in x if > 0 (otherwise use input grid)

/NP = N+I = number of grid points in wall-normal (eta) direction

/ISTART = start switch: 0 (fresh start); i > 0 (restart from i)

/M = max. order of backward difference method [2 or 3 RECOMMENDED]

/IOUT = output stride for sta_xxxx files

5.e-7 /RLIM = maximum residual allowed

20

0.7

12.0

-.35

300.

1

[KEEP DEFAULT 5.e-7]

/ITMAX = iteration limit [KEEP DEFAULT 20]

/STR = parameter of tanh stretching [KEEP DEFAULT 0.7]

/ETA_MAX = outer bound in wall-normal variable eta

/RO = initial guess for F = 1 - exp(ro*eta) [KEEP DEFAULT -.35]

/TWALL = dimensional wall temp. (Rankine--irrelevant for iadiab=l)

/IADIAB = wall boundary condition: 0 (isothermal); 1 (adiabatic)

notes: i) to run, create the subdirectory /sta

2) input files needed

'geom.dat'

'edge.dat'

'wingbl2.d'

geometry data

boundary-layer edge data

standard input containing parameters of
method

3) for cubic spline interpolation, edge data file must have

at least 4 points

4) at completion, subdirectory /sta will contain

file 'legend'

nsteps/iout numbered files 'sta_xxxx'
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Input file "geom.dat"

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

20 /number of descriptive header records
#

#################################################################

#

title: SUPERSONIC SWEPT-WING CASE

airfoil: NACAI6006

geometry data:

CHORD:

SWEEPD:

KSPLIT:

chord length (c*) if > 0

or normal chord (c n*) if < 0

sweep angle (psi) in degrees

index at which to switch from

Eq. (63) to Eq. (64)

tabular values of length l* and r* normalized

by c* or c_n* accozding to value of CHORD

#################################################################

#

20.0000

70.2180970318

8

2.9971707E-3

1.8810658E-3

9.4530382E-4

2.6244059E-4

0.

2.6244059E-4

9.4530382E-4

1.8810658E-3

2.9971707E-3

/chord

/sweepd

/ksplit

-I.0969796405742E-3

-8.7168943307489E-4

-6.2043138039564E-4

-3.2962356850761E-4

0.

3.2962356850761E-4

6.2043138039564E-4

8.7168943307489E-4

1.0969796405742E-3

0.9824749

0.9865789

0.9903595

0.9938442

0.9970505

i.

1.0061736003393E-3

7.8976675042668E-4

5.7946564411269E-4

3.7687616857631E-4

1.8348090931462E-4

0.
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Input file "edge.dat"

9 /number of descriptive header records

#

#################################################################
#

# Freestream data, pressure and suction coefficients
#

# tabular values of normalized length i*, cp_e, cq_e
#

#################################################################
#

5 /ifirst

1 /istag

2.4 /rminf

149.76 /pinf

390.0 /tinf

0.

2.6244059E-4

9.4530382E-4

1.8810658E-3

2.9971707E-3

4 2705112E-3

5 6953584E-3

7 2747553E-3

9 0147518E-3

1 0925392E-2

1 301854E-2

1.5307413E-2

1.7803775E-2

2.0526798E-2

2.34928E-2

2.6720202E-2

(index in 'geom.dat' corresponding to first point)

(index of stagnation point/attachment line)

(freestream Mach number)

(freestream pressure)

(freestream temperature)

0.1347191240328

0.1132312733923

7.0124557394367E-2

4.6016691556783E-2

3.1253217343323E-2

2.1114260233283E-2

1.3796344532341E-2

8.3160311603793E-3

4 0188934669989E-3

5 4343477728721E-4

-2 1489054727016E-3

-4 I03024062921E-3

-6 3038138624276E-3

-8 4553393854651E-3

-9.8847372967642E-3

-I.I098457423478E-2

0

0

0

0

0

0

0.

0.

0.

0

0

0

0

0

0

0

0.9824749

0.9865789

0.9903595

0.9938442

0.9970505

I.

2.3585518081544E-2

2.8966689722272E-2

3.5253108067807E-2

4.3951539866815E-2

5.3919871571419E-2

6.5944987759235E-2

0 •

0.

0.

0.

0.

0.
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Appendix B: Output Files

Outfile file "legend"

step

0 0.0000000E+00 0.1430674E+01 0.2222551E-03 0.0000000E+00 0 1350571E-07

2 0.1435503E-01 0.1763038E+01 0 3173347E-03 0.5206726E+00 0 2154925E-06

x* del*/L* delta* Mach_u rmax imax

5700238E-03 0.6863386E+00 0 2066538E-06

8060416E-03 0.7568990E+00 0 3413945E-06

I041978E-02 0.7961337E+00 0 4411312E-06

1290048E-02 0.8208850E+00 0 1781216E-06

1532241E-02 0.8375850E+00 0.2482159E-06

1791834E-02 0.8520063E+00 0.1293438E-06

4 0.3125234E-01 0.2366497E+01 0

6 0.5126869E-01 0.2689383E+01 0

8 0.7498714E-01 0.2913725E+01 0

i0 0.1030743E+00 0.3100542E+01 0

12 0.1362966E+00 0.3217949E+01 0

14 0.1755287E+00 0.3329082E+01 0

16 0.2217676E+00 0.3434735E+01 0.2072884E-02 0.8614153E+00 0.I185993E-06

18 0.2761402E+00 0.3506434E+01 0.2356517E-02 0.8695486E+00 0.1832802E-06

20 0.3399068E+00 0.3577373E+01 0.2663127E-02 0.8760325E+00 0.1388041E-06

22 0 4144507E+00 0.3632934E+01 0.2982440E-02 0.8814904E+00 0.2513429E-06

24 0 5012724E+00 0.3676531E+01 0.3315544E-02 0.8863561E+00 0.II03803E-06

26 0 6019561E+00 0 3718341E+01 0.3671124E-02 0.8904525E+00 0.4261433E-06

28 0 7181306E+00 0 3756340E+01 0.4047261E-02 0.8942131E+00 0.8833897E-07

30 0 8514025E+00 0 3767767E+01 0.4416550E-02 0.8979295E+00 0.8888528E-07

32 0 I003277E+01 0 3779752E+01 0.4805359E-02 0.9018746E+00 0.3266885E-06

34 0 I175043E+01 0 3792276E+01 0.5213497E-02 0.9055657E+00 0.8976225E-07

36 0 1367650E+01 0 3795478E+01 0.5624686E-02 0.9094002E+00 0.2393598E-06

38 0.1581563E+01 0 3789931E+01 0.6034509E-02 0.9135010E+00 0.4500929E-06

40 0.1816618E+01 0.3781879E+01 0.6447810E-02 0.9178708E+00 0.4005004E-06

42 0.2071904E+01 0.3774961E+01 0.6867179E-02 0.9222863E+00 0.4239713E-06

44 0 2345658E+01 0.3768265E+01 0.7287375E-02 0.9266923E+00 0.6726634E-07

2635245E+01 0.3762494E+01 0.7705623E-02 0.9310882E+00 0.3267236E-06

2937203E+01 0.3764590E+01 0.8133370E-02 0.9350821E+00 0.1027020E-06

3247372E+01 0.3767901E+01 0.8553584E-02 0.9387523E+00 0.2202283E-06

3561097E+01 0.3765214E+01 0.8945024E-02 0.9422244E+00 0.1433897E-06

3873515E+01 0.3783265E+01 0.9368727E-02 0.9451995E+00 0.3759408E-06

4179840E+01 0.3878009E+01 0.9974963E-02 0.9456833E+00 0.1965184E-06

4475640E+01 0.4109018E+01 0.1094322E-01 0.9424782E+00 0.1737138E-06

46 0

48 0

50 0

52 0

54 0

56 0

58 0

6

ii

13

12

ii

ii

7

i0

9

8

8

7

7

6

7

7

5

6

6

6

6

6

7

6

5

5

7

7

7

7
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Outfile file "sta_O058"

3 /number of header records

0.44756403067253E+01 /x*

0.10943219324209E-01 /delta*

0.41090179017183E+01 -.17330631115000E+01 /dol, phi(deg)
42

0.000000000000000E+00 0.100000000000000E+01 0.000000000000000E+00

0.2049257838884E+01 0.0000000000000E+00 0.0000000000000E+00 0.0000000000000E+00

0.1775266507739E-II 0.1499864395883E+00 0.1650165890827E+00 0.1870455205679E-13

.4736774938549E-01 0.4235754057480E-01 -.1875125248799E-09 0.7175862211209E-03

0.142881152183827E-01 0.I00000128910483E+01 -0.526462043119655E-04

0.2049253001368E+01 0.2147348282272E-02 0.2357777379672E-02 0.7308298872691E-07

-.6773102823868E-03 0.1505918742467E+00 0.1650168731993E+00 0.I021837297079E-04

-.4743991377321E-01 0.4238739313721E-01 0.4042780866942E-04 0.7127460511339E-03

0.145894283155801E+02 0.I00131628995567E+01 0.260143956494611E+01

0.1000000000000E+01 0.1000000000000E+01 0.1000000000000E+01 0.4387097619112E-02

-.1587864062458E-08 -.3296918293927E-II -.7673861546209E-II 0.4498749479165E-05

0.3458531461220E-08 -.3245992363787E-I0 -.7122808454163E-09 -.8246321650703E-09

27

0.447564030672532E+01

0.657951999999998E+00

0.951042244770178E-02

-0.173306311149996E+01

0.I09432193242091E-01

0.410901790171832E+01

0.248885825547478E+01

0.942478246658577E+00

0.230350823102943E+01

0.631016966003098E+06

0.282420496727099E+07

0.168053710678193E+04

0.690535705626887E+04

894399863413379E+03

000000000000000E+00

218600000000920E+04

130386856151895E+03

202694083069417E-03

374865488202295E+03

768196040225634E+03

287297442032797E-06

140000000000000E+01

719999999999999E+00

227000000000000E-07

198600000000000E+03

171600000000000E+04

173713816664645E-06

/no. of trailer records

/x*

/l*/c*

/t*/c*

/phi (deg)

/displacement thickness*

/delta*/L*

/edge total Mach no.

/edge u Mach no.

/edge w Mach no.

/edge unit Reynolds no.*

/edge Re no. based on x*

/edge Re no. based on L*

/edge Re no. based on delta*

/edge u-velocity*

/wall v-velocity*

/edge w-velocity*

/edge pressure*

/edge density*

/edge temperature*

/wall temperature*

/edge viscosity*

/gamma

/Prandtl number

/first Sutherland constant*

/second Sutherland constant*

/ideal gas constant*

/rmax
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Figure 2: Comparison of present results (P) with those of Pruett and Streett

(PS) for two-dimensional Mach 4.5 flow over insulated flat plate.
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